
Scientific Visualization, 2018, volume 10, number 5, pages 57 - 85, DOI: 10.26583/sv.10.5.05

The image analysis of the geometric bodies
with supplemental interactive block for training new

knowledge in a limited natural language

N.G. Volchenkov

National Research Nuclear University "MEPhI"
ORCID: 0000-0002-1474-6853, NGVolchenkov@mephi.ru

Annotation

The prototype of the system for image analysis of geometric bodies, using the interface of
logical and visual programming, was developed by the author for experiments with an intelli-
gent robot that is equipped with a video camera. It is assumed that the robot is designed to
plan its actions - capture and transfer of bodies. The class of bodies considered by the author
is colored polyhedra in local colors. The drawback of the results obtained in the author's pre-
vious publication is the absence of an analysis of the relative location of the identified set of
polyhedra. Obvious are the difficulties that can arise when trying to automatically (without
the participation of a person) to identify the mutual arrangement of bodies. The task is facili-
tated by the inclusion in the system of the block of interactive training of the robot by man.
This person is an operator - a person who can formulate his description of a specific image in
a limited natural language. The form of this description is the so-called surface structures of
natural language phrases. In this article, the author presents the program of syntactic analysis
of surface structures necessary for this purpose. This program is implemented on Prolog - the
language of logical programming. To illustrate the results of the training block implemented
on Prolog, the author, like in his previous publication, offers a visual programming interface
(Visual Basic language) and logical programming (Prolog language). The article presents an
example of a concrete image, on which 5 bodies of different colors are revealed. This example
allowed us to demonstrate the most typical cases of the relative positioning of bodies, their
description on the surface structures proposed by the author and the syntactic analysis of the
phrases of this language. An important side effect of syntactic analysis is also presented - the
construction of deep structures of a limited natural language. These structures are represent-
ed in the form of structures of the language Prolog - on the developed by the author language
of deep structures. This view can later be used by the robot directly to plan its actions.

Key words: logical programming (LP); language Prolog; visual programming; the
Visual Basic language; database of Prolog; limited natural language (LNL); the surface struc-
ture of the phrase on the LNL; learning as introducing new knowledge into the Prolog data-
base; syntactic analysis of the LNL; the language of deep structures (DSL); the definite clause
grammar (DCG) – the mechanism in Prolog.

Introduction
The content of this article is

the development of the topic presented
by the author's previous publication in
this journal – the article "The applica-
tion logical and visual programming
interface for image analysis of the ge-
ometric bodies" [1]. In this publication,
the urgency of the "intellectual" task of

analyzing the images obtained from the
video camera of objects that are in the
field of view of an industrial robot ma-
nipulator, whose purpose are: the
choice of the desired object; estimation
of its size; his location relative to other
objects and planning his actions to cap-
ture and transfer this subject.

In this publication, in particu-
lar, the possibility of using a joint ap-

https://doi.org/10.26583/sv.10.5.05
mailto:NGVolchenkov@mephi.ru

plication of logical programming
(Prolog language) and visual pro-
gramming (Visual Basic language) for
analyzing a set of images of geometric
bodies with flat faces was justified.

Important stages of analysis
have been described, from the stage of
transforming a tone (raster) image into

a vector image (Figure 1), and ending
with the logical analysis of a vector im-
age, as a result of which an exact num-
ber of bodies with a number of charac-
teristics is revealed in the image (Fig-
ure 2).

Figure 1. An example of a "picture" obtained during the conversion of a bitmap im-
age into a vector image. The numbers of all detected faces are shown.

Figure 2. The result of the analysis of the image shown in Figure 1.

The characteristics obtained as a
result of the analysis of images of bod-
ies of this class are as follows:
(1) the number of detected bodies

("bodies" in this case are conven-
tionally called sets of images of pol-
ygons corresponding to the faces of
polyhedrons);

(2) the coordinates of the conventional
"centers" of the identified bodies
(the coordinates of the centers of
the rectangles, in each of which im-
ages of all the faces of one polyhe-
dron are inscribed);

(3) conditional "sizes" of identified
bodies in units proportional to the
areas of the rectangles indicated in
the previous paragraph (2);

(4) the "objective" color value of each
body as the value of the function
Argb, the arguments of which are
calculated as the mean values of
this function for all faces of this
body, and the "subjective" value of
the linguistic variable Color (red,
green, etc.).

The publication [1] presented

the "logical-visual" approach formulat-
ed by the author to the solution of the
problem of analyzing images of geo-
metric bodies with planar faces. The
main component of this approach is
the syntactic (structural) method based
on logical programming [2, 3, 4],
which is a particular case of a wider
paradigm of declarative programming
[5], fundamentally different from the
traditional paradigm of imperative
(operator) programming. The problem
of analyzing images of geometric bod-
ies considered in this publication can
serve as a fairly vivid example of the
problems of this class. Therefore, the
results obtained by the author on the
creation of the demonstrational proto-
type of the "intellectual" component of
the system of image analysis of geo-
metric bodies can serve as a good basis
for mastering the skills of practical ap-
plication of the declarative approach to

programming many problems of artifi-
cial intelligence [6, 7].

As noted in the publication [1],
the experience of using functional and
logical programming languages “to
solve symbolic processing problems led
to an understanding of the need to vis-
ualize the results of solving many prac-
tical problems of this class. Without
visualization, the interpretation of
these results is extremely difficult. To
solve the problem of visualization, the
author proposed an interface of two
programming languages - the language
of logical programming (Prolog) and
the visual imperative programming
language (Visual Basic), more pre-
cisely, of two programming systems for
these languages” [8, 9]. Language
Prolog is used to solve the main, "intel-
lectual" part of the task. The Visual
Basic language is used to perform
computations that supplement the log-
ic inference, as well as to form a visual
representation of the results of this in-
ference.

Of course, most of the infor-
mation that is needed by the "intelli-
gent robot" to solve the tasks of plan-
ning its actions is not contained in the
results, the example of which is shown
in Figure 2. They are "seen" by the per-
son, but they are not "visible" to the
robot, since it is not has the meta-
knowledge that a person has. For ex-
ample, knowledge of the mutual ar-
rangement of bodies, which can be very
important in making decisions about
the capture of the desired object (if
necessary, its transfer to a new loca-
tion).

The object can be "swamped"
with other items that need to be re-
moved to get to the desired object. Etc.
For example, to capture and transfer
the green "box" in Figure 1, you need to
release it from the object resting on it -
the pyramid of blue. In this case, the
robot "knows" only that the pyramids
in Figure 2; that one of them is gray, its
size is smaller than the size of the oth-
er, the blue pyramid, and that it is
placed on the leftmost object. Of

course, to solve this simple task for a
human robot, it is necessary, as a child,
to explain something - in particular, to
teach it the elementary methods of de-
duction. In particular, to make such,
for example, the conclusions: "from the
fact that both pyramids of different
colors; the gray pyramid is on the red
object; the green box serves as a sup-
port for the larger pyramid, it follows
that to release the green box, you must
remove the blue pyramid from it".

In this article, we describe an at-
tempt to complement the system of
image analysis of the class indicated in
the previous article with a learning
component. Training is supposed in
the mode of communication with a
person - a "teacher", who in a limited
natural language interprets the results
obtained at the previous stage.

For example, with respect to the
image shown in Figure 1, the "teacher"
can enter the following statements into
the database of the logical part of the
image analysis program (in the logical

programming language Prolog) in a
limited natural language (LNL):

1. Big blue pyramid is on the green
box.

2. Little gray pyramid stands on the
red object.

3. Large object is to the right and be-
hind the small object.

4. Big green object has the rectangular
notch.

5. A red object does not have specifici-
ty.

6. All four bodies highlighted on the
right.
Etc.

After entering these phrases on
the LNL (in the form of Prolog lists, for
example: [big, blue, pyramid, is,
on, the, green, box]) representing
the analyzed language strings, their
syntactic analysis takes place in ac-
cordance with some generative gram-
mar. After that, new facts should ap-
pear in the database (Prolog database).
These facts will be presented in the
form of so-called deep (canonical)
structures - some statements.

For example, for the above phrases - these are the following Prolog facts:

1. statement(location(is(on), object(piramid1, char(size(big), color(blue), _), ob-
ject(box1, char(size(_), color(green), _))).

2. statement(location(is(on), object(piramid2, char(size(little), color(grey), _),
object(box2, char(size(_), color(blue), _))).

3. statement(location(is(right), object(box1, char(size(big), color(_), _), object(
box2, char(size(little), color(_), _))).

4. statement(location(is(behind), object(box1, char(size(big),color(_), _), object(
box2, char(size(little), color(_), _))).

5. statement(object(box1, char(size(big), color(green), spec(notch)))).
6. statement(object(box2, char(size(little), color(red), spec(no)))).
7. statement(object(all, char(number(4), lighting(right)))).

Here, "_" is an anonymous unnamed
Prolog variable, char is an abbreviation
of the word characteristics, in this case
it is the characteristics of the object.
Characteristics are several: size, color,
spec (short for the word specific).

Note that the number of struc-
tures (here their 7) may not coincide

with the number of initial phrases on
the LNL (here they are 6).

We also note that the same
deep structures can, by virtue of the
variety of ways of expressing the same
meaning and by replacing many con-
cepts (for example, object, box, pyr-
amid, etc.) with a single canonical
term (for example, object), can be-
come the same for different initial so-

called surface structures – LNL sen-
tences. This leads to the fact that the
number of deep structures for a given,
very specific subject area, is signifi-
cantly, by orders of magnitude, smaller
than the number of surface structures.

This makes it possible to sig-
nificantly simplify the process of "un-
derstanding" by the learner (the object
of learning - the program on Prolog) of
the phrases on LNL provided to the
Prolog database by the instructor (the
subject of training is the human opera-
tor). In practice, this translates into the
fact that the formal grammars that
generate phrases on the LNL can be
compact and concise.

"Teacher" can "ask" the program to
answer the questions formulated also
on LNL:
1. How many items are there in the

image?
2. What color is the big box?
3. What is to the left of the green ob-

ject?
4. What color is the body next to the

small body?
5. Is the red body of a green body

smaller?
Etc.

After the introduction of these
phrases (questions) to LNL and their
parsing, new facts should appear in the
Prolog database in the form of so-
called "deep structures" of questions,
for example, for the ones mentioned
above:

1. question (object(all, char(number(X), _))).
2. question (object(box1, char(size(big), color(X), _))).
3. question (location(is(left), object(Name1, Char1), object(Name2, char(_, col-

or(green), _)))).
4. question (location(is(on), object(Name1, char(_, color(Color1), _)), object(

Name2, char(size(little), _, _)))).
5. question (compar(less(Size1, Size2), object(Name1, char(size(Size1)_, color(

red), _), object(Name2, char(size(Size2, color(green), _)))).

The main "side effect" of the
actions of the "teacher" (input of
statements and questions on the LNL)
should be new knowledge, which
should be preserved in the Prolog da-
tabase in the form of facts-statements
and facts-questions. In the future,
facts-questions can be interpreted us-
ing user requests to the Prolog data-
base. The result of this interpretation
may turn out to be unexpected: the
variables contained in these structures
can "turn" from unrecognized into the
ones indicated! This effect is indicative
of the elements of "intellectuality" of
formal logical (deductive) inference,
which "the program" itself displays on
Prolog in the process of its work.

For example, the third ques-
tion from the list: question (location
(is (left), object (Name1, Char1),
object (Name2, char (_, color,
green), _)))) Prolog response can

unexpectedly follow: statement (lo-
cation (is (left), object (box2,
char (size (little), color (red),
spec (no))), object (box1 , char
(size (big), color (green), spec
(notch)))). (To the left of the large
green object named box1, which has a
feature (notch), there is a small red ob-
ject named box2.)

Note that, by the way, Prolog
"independently specified": the original
green object (1) has a large size, (2) has
the name box1 and (3) has a feature
(notch). It's good or bad - to get redun-
dant information - to judge the user.

1. Theoretical bases of
the use of logical pro-
gramming for processing
texts on LNL, describing
images of the totality of
bodies of the class under
consideration

1.1. The use of difference

lists to improve the efficiency of

downward parsing in Prolog
Parsing is an important applica-

tion of logical programming (in gen-
eral) and Prolog language (in particu-
lar).

We recall the ones presented in
Sec. 1.1 of the article [1] definitions:
generating grammar; formal lan-
guage generated by such a grammar,
as well as the place of context-free and
context-dependent grammars in the
classification of formal grammars. In
the classic formalization of generative
grammars first proposed by Noam
Chomsky in the 1950s. [Wikipedia:
https://en.wikipedia.org/wiki/Formal
_grammar].

Formal generating grammar is
the next "four":

G = <VT, VN, S, P>,
where VT, VN are terminal and

non-terminal dictionaries, P = {i 

i} is the set of inference rules, where
i is a chain containing a non-terminal

symbol, i is an arbitrary chain of ter-
minal and non-terminal characters, S
is the initial symbol.

Direct derivation is a relation:



where  i  i  and
there exists a rule: i→i.

Derivation is the relation

n, n = 1, 2, ...
if there is a sequence of relations

 1n.
The language generated by the

grammar G is the following set:

L(G) = {S}

a set of terminal chains of  - chains
consisting only of terminal symbols –
symbols of the terminal vocabulary
VT).

Grammars and languages are divid-
ed into types. In practical problems,
grammars and languages of the follow-
ing three types are most often used.

Types of formal grammars:

 If a nonterminal symbol on the left
of some grammar rule is surround-
ed by other symbols (terminal and
/ or nonterminal), then such a
grammar is called context-
dependent.

 Grammar is called context-free if
the left-hand side of every rule of
derivation of this grammar is a
chain consisting of a single non-
terminal symbol.

 A context-free grammar is called
automaton if every rule of deriva-
tion of this grammar has the fol-
lowing form:

А  аВ or А  а or А  ,
where A, B – nonterminal symbols,
a – terminal symbol, λ – empty
chain.

Types of formal languages:

 A language is called automaton if it
is possible to construct an automa-
ton grammar to generate it. (Of
course, for the generation of this
language, grammars of other types
can also be constructed.)

 Language is called context-free, if it
is possible to create a context-free
grammar to generate it, but you
can not construct an automaton
grammar.

 Language is called context-
dependent, if it is possible to con-
struct a context-free grammar for
its generation.

As mentioned above, the Prolog
program has a built-in DCG mecha-
nism that allows you to build effective
downstream parsers for languages de-
fined by formal grammars of various
types. Its presence makes it possible to
create efficiently working descending
grammar analyzers on Prolog.

https://en.wikipedia.org/wiki/Noam_Chomsky
https://en.wikipedia.org/wiki/Noam_Chomsky
https://en.wikipedia.org/wiki/Formal_grammar
https://en.wikipedia.org/wiki/Formal_grammar

The DCG mechanism uses the no-
tion of a difference list, by means of
which it is possible to avoid a "combi-
natorial explosion" in the nondeter-
ministic decomposition of the initial
analyzed chain, if the language is suffi-
ciently complex. It is this partition that
must be made in descending syntactic
analyzers.

As it turned out, you can do without
an inefficient append/3 predicate, the
use of which "begs" for the nondeter-
ministic partitioning of the chain into
sub-strings. To do this, use the notion
of a difference list [3, 4] or (equivalent-
ly) to introduce an additional argument
into analyzer predicates.

A difference list is an infix type
structure with the name \ (slash with a
slope to the left) and two components:
the list [A1, ..., An | T] and the list T:

[A1, …, An | T] \ T.

This structure is equivalent to an
"ordinary" list containing n elements:
[A1, ..., An]. But there is a variable T
in the difference list entry, whose value
can be any list. An analogy can be giv-
en: any number, for example, 5, is
equal to the value of the expression (5
+ X) - X, containing the variable X
with any value.

Using the notion of "difference list"
allows to significantly increase the effi-
ciency of many list processing predi-
cates - in our case, the append/3
predicate (concatenation or "gluing").

Instead of defining
append([], L, L).
append([H|T], L, [H|R]) :- ap-

pend(T, L, R).
you can use a much more effective

definition:
append_dl(X\Y, Y\Z, X\Z).
The illustration of this definition is

Figure 3. Illustration of the concatenation of difference lists:

append_dl (X \ Y, Y \ Z, X \ Z).

The last definition allows you to

"glue" lists (their length can be very
large) without numerous recursive
calls - but only at the level of matching
patterns (the fast working pattern
matching Prolog).

Example 1.1.
Consider two lists: L1 = [a, b, c];

L2 = [d, e, f]. It is necessary to find
the concatenation of these lists.

The call ? - append ([a, b, c], [d,
e, f], Z). leads to the need for three

recursive calls, while the call ? - ap-
pend_dl ([a, b, c | X] \ X, [d, e, f] \
[], Z). gives the result Z = [a, b, c, d,
e, f] \ [] for the only step of inference.

Listing 1 is the multi-line comment
of the small Prolog program. (Multi-
line comment framed by brackets /*
and */.) This listing demonstrates the
experiment with system Win Prolog
LPA [8].

Listing 1
/* Program:
:- op(200, xfx, '\').
append_dl(X\Y, Y\Z, X\Z).
Console:
0.000 seconds to consult append_dl [c:\prolog\lpa\]
| ?- append_dl([a, b, c|X]\X, [d,e,f]\[], Z).
X = [d,e,f] ,
Z = [a,b,c,d,e,f] \ []
*/

Example 1.2.
Consider a program on Prolog that implements an analyzer for a fragment of a

context-free grammar that generates phrases (questions) like:
(1) Is a small gray pyramid located on a red box?
(2) The small gray pyramid is located on the red box?
using the difference lists instead of the append/3 predicate.
Before writing a parsing program, that works on the principle of top-down parsing,

it is recommended to build a "classical" generative grammar.
It is desirable to make a "minimal" generating grammar that would ensure the

generation of language phrases that do not go beyond the types of Example 1.2. The
generating grammar for the analysis of the above chains of types (1) and (2) can be
one that is represented by the following listing:

Listing 2

/*

SLoc → Verb NGr Verb Prep NGr Qm for phrases of the type (1);
SLoc → NGr Verb Verb Prep NGr Qm for phrases of the type (2);

non-terminal NGr means "noun group";
non-terminal Verb means "verb";
non-terminal Prep means "preposition";
non-terminal Qm means " question mark".

NGr → Noun | Adj NGr
Verb → is | located | ...
Prep → on | under | to the left | to the right | higher | below | ...
Adj → big | little | green | red | large | small | ...
Noun → subject | object | box | body | pyramid | ...

non-terminal Noun means "noun";
non-terminal Adj means "adjective"

in the nominative or the genitive case (no for English – only for Russian).
*/

Remarks (for the version in Russian).

This is a context-dependent grammar, since the sentence members must be related
by gender, number and case. Context dependency can be implemented using varia-
bles. For example, as in the two changed lines of Listing 2:

Listing 3

SLoc → NGr(K1) Verb(K1) Verb(K1) Prep NGr(K2) for phrases of the type (1);
SLoc → Verb(K1) NGr(K1) Verb(K1) Prep NGr(K2) for phrases of the type

(2);

The values of the variables K1 and K2 are the context, for example, in the consid-
ered case:

K1 = k(case(nominative), gender(female)) and K2 = k(case (preposi-
tional), gender(female)) - for phrases of the type (1), for example: "the
red box is placed on a green box" - in Russian;
K1 = k(case(nominative), gender(female)) and K2 =
k(case(genitive), gender(female)) - for phrases like (2), for example:
"was the red box placed on a green box?" - in Russian.
The context connection K1 is realized between the symbols NGr and Verb at
the beginning of the phrase (1), and the context K2 - between the symbols
Noun and Adj at the end of the phrase (2).

End of remarks (for the version in Russian).

And now, the main thing: about replacing the ineffectively working predicate ap-
pend/3 difference lists.

Listing 4 represents a parser on Prolog with a quasi-nondeterministic, slowly
working append/3 predicate (for now, without using the difference lists and the
DCG mechanism).

Listing 4

/* Grammar:
SLoc → Verb(K1) NGr(K1) Verb(K1) Prep NGr(K2) for phrases of the type (1)
SLoc → NGr(K1) Verb(K1) Verb(K1) Prep NGr(K2) for phrases of the type (2)
NGr(K) → Noun(K)
NGr(K]) → Adj(K) NGr(K)
Prolog: */

an_SLoc(location(type(2), X, L1, Y, L2), Linput) :-
 append([X|L1], [Y, Z|L2], Linput),
 an_Verb(K1, X), % for phrases of the type (1)
 an_NGr(K1, L1),
 an_Verb(K1, Y),
 an_Prep(Z),
 an_NGr(K2, L2).
an_SLoc(location(type(1), L1, X, Y, L2), Linput) :-
 append(L1, [X,Y|L2], Linput),
 an_NGr(K1, L1), % for phrases of the type (2)
 an_Verb(K1, X),
 an_Verb(K1, X),
 an_Prep(Y),
 an_NGr(K2, L2).
 an_NGr(K, [X]) :- an_Noun(K, X).
 an_NGr(K, [X|L]) :- an_Adj(K, X), an_NGr(K, L).

In this program in Prolog's notation it is assumed that the analyzed LNL chains are

represented as lists of tokens. Here, these are the following lists:
[is, small, gray, pyramid, located, on, red, box, ‘?’];
[small, gray, pyramid, is, located, on, red, box, ‘?’].
We use the above definition of a difference list:
DList = [A1, ..., An | T] \ T.
This list is equivalent to the "usual" list [A1, ..., An].

Using difference lists instead of "normal" lists allows to significantly reduce the
time for searching for variants of nondeterministic partitioning of the chain repre-
sented as a list of tokens into sub-strings.

It is known [2, 6, 7] that an algorithm of downward parsing (syntactic analysis
from top to bottom) based on logical programming, in general, and on Prolog, in par-
ticular, is based on such a partitioning. The difference lists allow to get rid of the ap-
pend/3 predicate in the rules of the parser. This shown in the following example:

Example 1.3.
Suppose that there is a grammatical rule with three nonterminal symbols on the

right: S → A B C. When implementing a downward parser on Prolog, this rule re-
quires breaking up the original chain into 3 chains:

Listing 5

an_S(InputList) :- append(L1, L2, InputList),

 append(L3, L4, L2),

 an_A(L1), an_B(L3), an_C(L4).

As noted above, the use of the predicate of concatenating two lists (or splitting
one list into two) is described without recursive rules: append_dl(X \ Y, Y \ Z, X \
Z). This allows nondeterministic partitioning of lists into sub-lists without costly re-
cursive calls – only at the level of identifying data structures (pattern matching).

Actually, the above rule in the analyzer will look like this:
Listing 6

an_S(InputList\RestList) :-
 an_A(InputList\L1), an_B(L1\L2), an_C(L2\RestList).

This inclusion of the notion of a dif-
ference list in Prolog syntax analyzers
allowed the creators of numerous
modern versions of this language to
include the DCG mechanism, specially
developed about 40 years ago [2],
which is described in detail in the next
section 1.2.

1.2. DCG – the built-in

parsing mechanism in Prolog that

implements the idea of difference

lists
The implementation of difference

lists is the DCG mechanism built into
any modern Prolog system.

In the classic monograph of Sterling
and Shapiro [7] it is noted (p. 203):
"The origin of Prolog is connected with
the attempt to use logic to express
grammatical rules and formalize the
process of syntactic analysis. The most

common approach to the implementa-
tion of parsing by Prolog is the use of
definite clause grammar (DCG). Such
grammars are some generalization of
context-free grammars. They are a no-
tation version of a certain class of pro-
grams on Prolog and therefore are exe-
cutable.

The DCG as a notation version of the
programs of the class of "downstream
parsers" on Prolog, in which the rules
of generating grammars are "written"
directly, is declared by the following
rules of notation:

(1) Prolog bundle :- ("reverse impli-
cation"), which is read as the word "if",
between the left and right parts of the
Prolog rule, is replaced by a bundle -->
corresponding to the arrow of the gen-
erating grammar.

(2) The predicates of both the left
part of the rule (before the binding -->)

and the right side of the rule (after the
link -->) in the DCG notation should
not contain the input chain (the lexeme
list) or the remainder (in the form of
input parameters) This chain, left after
its analysis in accordance with this rule
of grammar.

(3) The arguments of the predicates
of both left and right of the rule in DCG
notation can only be output parame-
ters.

(4) All additional actions accompa-
nying the syntactic analysis (for exam-
ple, arithmetic calculations), produced
with the arguments of the predicates,
must be surrounded by curly braces:
{and}.

(5) The terminal symbols in the right
parts of the grammar rules must be
represented by lists. In particular, if
one character is "read", for example, a
token, this is a list of one element.

Example 1.4.
Let's look at Listing 6 - the parse program according to the grammar rule:

S → A B C.
In the only rule of this program, in both the left and right part of it all predicates

have only one input parameter represented by the difference list. Therefore, in DCG
notation, this rule will have the following form:

Listing 7

an_S --> an_A, an_B, an_C.
…

Let's say that this rule is used for analysis language: L = {an bm ck}, n>0, m>0,

k>0. This is a context-free language, so it does not require the use of variables to im-
plement a context dependency. To write the analyzer with the output of the three
output parameters N, M and K, add additional rules to Listing 7 in the DCG notation:

Listing 8

an_S(N, M, K) --> an_A(N), an_B(M), an_C(K).
an_A(1) --> [a].
an_A(N) --> [a], an_A(N1), { N is N1 + 1 }.
an_B(1) --> [b].
an_B(M) --> [b], an_B(M1), { M is M1 + 1 }.
an_C(1) --> [c].
an_C(K) --> [c], an_C(K1), { K is K1 + 1 }.
/* Example of calling the goal and getting the result:
0.000 seconds to consult a^nb^mc^k.pl [d:\2018\]
| ?- an_S(N, M, K, [a,a,a,b,b,c,c,c,c], []).
Yes, N = 3 , M = 2 , K = 4 */

And, finally, we introduce one more complication: the equality of the values of the

variables N, M and K. This restriction turns the language into a context-dependent
language {an bn cn}, n>0. To implement the analyzer of this language in DCG nota-
tion, it is enough to change only the first rule:

Listing 9
 an_S(N) --> an_A(N), an_B(M), { M = N },
 an_C(K), { K = N }.
…

/* Example of calling the goal and getting the result:
0.000 seconds to consult a^nb^nc^n.pl [d:\2018\]
| ?-an_S(N, [a,a,b,b,c,c], []).
Yes, N = 2
| ?-an_S(N, [a,a,a,b,b,c,c,c,c], []).
no */

The Prolog analyzer for the example 1.2 in Listing 4 without the append/3 predi-
cate and using DCG is shown in Listing 10:

Listing 10

an_SLoc(location(type1)) --> % for phrases of the type (1)
an_Verb(K1), an_NGr(K1), an_Verb(K1), an_Prep, an_NGr(K2).

an_SLoc(location(type2)) --> % for phrases of the type (2)
an_NGr(K1), an_Verb(K1), an_Verb(K1), an_Prep, an_NGr(K2).

an_NGr(K) --> an_Noun(K).
an_NGr(K) --> an_Adj(K), an_NGr(K).

In conclusion of this section, let's consider what rule in the traditional Prolog nota-

tion the rule is automatically converted into DCG notation. This question is answered
by the query: ? - listing (<predicate name> / <arity of predicate>). You must
enter this query after compiling the predicate that you entered in the DCG notation.

For example, we call the specified query after compiling the definition of the predi-
cate an_S/1, entered in the DCG notation (Listing 11), and after testing the operation
of this predicate (Listing 12):

Listing 11
an_S(N) --> [a], an_S(N1), [b,c], {N is N1 + 3}.
an_S(3) --> [a,b,c].

Listing 12

| ?- an_S(N, [a,a,a,a,b,c,b,c,b,c,b,c], []).
N = 12
| ?- listing(an_S/3).
% an_S/3

an_S(A, B, C) :-
 'C'(B, a, D), an_S(E, D, F), ('C'(F, b, G), 'C'(G, c, C)), A is E + 3.
an_S(3, A, B) :- 'C'(A, a, C), 'C'(C, b, D), 'C'(D, c, B).

Note that using the built-in predicate 'C'/3, which is used only to separate the

head (Head) and the tail (Tail) of the list (List), demonstrates the use of difference
lists for parsing. Its definition is: 'C' ([Head | Tail], Head, Tail).

We redefine the names of the variables generated by the system (system names A,
B, C, D, E, F, G), to more meaningful ones (mnemonic names). In the first rule, re-
place: A to N; B to Input; C to Rest; D to L1; E to N1; F to L2; G to N3. In the second
rule, replace: A to Input; B to Rest; C to L1; D to L2. We also replace the built-in pred-
icate 'C' / 3 in accordance with its definition. Then we get:

Listing 13

an_S(N, Input, Rest) :-
 Input = [a|L1], an_S(N1, L1, L2),
 L2 = [b|L3], L3 = [c|Rest],
 N is N1 + 3.
an_S(3, Input, Rest) :-
 Input = [a|L1], L1 = [b|L2], L2 = [c|Rest].

When translating from DCG notation to Prolog's notation, the system automatical-
ly performs an additional optimization of these rules:

Listing 14
an_S(N, [a|L1], Rest) :-
 an_S(N1, L1, [b,c|Rest]), N is N1 + 3.
an_S(3, [a,b,c|Rest], Rest).

Obviously, the presentation of these two rules in DCG notation (Listing 11)
looks much laconic and expressive, as it directly reflects their relationship to the gen-
erating grammar.

2. Technology of practical imple-

mentation and the results ob-

tained

The technology of practical imple-
mentation of the inclusion of the train

ing block on the LNL into a system
of analysis of the considered class of
images is more conveniently and clear-
ly demonstrated on concrete examples.
In the practical implementation of the
approach considered in this article, an
experiment was conducted using the
following example.

Example 2.1.
Let the analyzed tone image after its

transformation into a vector form (the

transformation process described in
the author's article [1]) demonstrate
five bodies of different colors with flat
faces (Figure 4).

The image analysis system described
in the above article [1] not only con-
verts the tone image into a vector im-
age, selects the vertices and edges of
the polyhedra represented in the image
using the visual Visual Basic language,
but also calculates a certain result us-
ing the Prolog program. The original
data and the result are visualized on
the screen form (Figure 5).

Figure 4. Example of a vector image (obtained from a tone image) of five bodies

with flat faces. The faces of all bodies on this image are numbered

Figure 5. An example of the application's screen form, which implements the inter-

face of programs in Visual Basic and Prolog. The form shows both the original data
and the results of the image analysis: the revealed list of bodies (polyhedra) with their

characteristics

The bodies in Figure 4 are in the
spatial relationships that are obvious to
the unsophisticated viewer. These rela-
tions man (observer) in accordance
with his traditional model of the world

can easily interpret, for example, as fol-
lows:

in the figure an object is fixed, which
can be called a "table" of brown col-
or;

on the "table" are two "boxes" of red
and green color;

under the "table" is a "box" of blue
color;

 on the green "box" is a white "book".
As it was said in the previous ar-

ticle of the author on the topic under
consideration [1], the ultimate goal of
the image recognition system of this
class can be the planning of the actions
of an intelligent robot to capture and
transfer objects fixed by the robot's
video camera. The planning program,
of course, should work together with
the image analysis program.

Obviously, to specify the plan of
the above actions of the robot, there is
not enough information about the rela-
tive location of objects identified in the
image. It seems advisable to include in
the planning system of the robot's ac-
tions an additional "learning" block to
what is the relative position of the ob-
jects on the image so that the robot
can, for example, free an object intend-
ed for capture and transfer to a new
location from other objects that inter-
fere with it.

It is also obvious that it would
be reasonable to use the experience of
a person who could easily assess the
situation and offer the work necessary
for transportation (something to re-
move, something to rearrange, etc.). In
order not to require a person to know
the form of the robot's representation
of the scene that the program fixes, it is
reasonable to offer a very simple, lim-
ited natural language to the person,
which we have already discussed in
this article.

To create this block of training,
first of all, it is necessary to develop a
grammar that generates phrases LNL -
a limited natural language for describ-
ing statements and questions regarding
objects present in the image. Let's
demonstrate a simple example of such
a grammar and a program in the
Prolog language that implements the
syntactic analysis of phrases generated
by this grammar.

It is reasonable to limit our-
selves to the presentation of the small
parser program, developed by the au-
thor of this article. In this program the
author has included the necessary
comments, which greatly facilitate the
understanding of its work even for
those readers of this article who do not
have a significant experience in logical
programming, in particular, in the
Prolog language.

The purpose of this program is
to convert the surface structures ex-
pressions of the limited natural lan-
guage (LNL) into the deep structures
expressions of the deep structures lan-
guage (DSL) which, by virtue of their
rigidly and unambiguously interpreted
formal basis, can easily be used by an
intelligent robot when planning its ac-
tions.

Example 2.2.
Transformation of the surface

structure (the list of lexemes – list of
English words):
[the, fourth, body, is, under, the
third, body]
 into the N-th structure for these bod-
ies with detected values of names, sizes
and colors:
st (N, location (is (under), object
(box3, char (size (middle), color
(blue))),
object (table, char (size (big), col-
or (brown))))).

The beginning of the program
on Prolog (more precisely, beginning of
the code in the mixed of the "pure"
Prolog notation and the DCG notation)
is presented in the listing:

Listing 15

/* - Left bracket of a multi-line comment.
Translation of Statements and Questions from Limited Natural Language (LNL) to Deep

Structures Language (DSL)
Due to the orientation of DCG notation to generative grammars, the grammar generating
surface structures (lists of lexemes on LNL) is not described here separately,
but is represented in the program itself in the form of rules in DCG notation.
The program is launched by entering the following Prolog goal:

| ?- from_LNL_to_DSL.
The name of the target predicate is a mnemonic name: "translation from a limited natural

language into the language of deep structures".
Right bracket of a multi-line comment: */

After the comment - the interpreted part of the code:

Listing 16
% Start of the program

:- dynamic(st/2). :- dynamic(qu/2).
 % These declarations remove protection

 % of the predicates st/2 and qu/2. This allows to write

 % new statements and questions into the Prolog database.

The Prolog test database in this program represents the facts corresponding to the

image in Figure 4:
Listing 17

% Statements
% are presented in the form of three facts with the only argument.
% Each of these fact is a list of an arbitrary number of elements - lists of tokens.
% each of these token is a Russian or English word:
% (1) statements for the rename commands of all bodies in the image:
ren_sts([[assign, the, first, body, a, name, box1],
 [assign, the, second, body, a, name, box2],
 [assign, the, third, body, a, name, table],
 [assign, the, fourth, body, a, name, box3],
 [assign, the, fifth, body, a, name, book],]]).
 % "ren" from the word "rename", "sts " from the word "statements".
% (2) statements to refine the values of the characteristics of bodies (size, color)
% in terms of values of linguistic variables:
char_sts([[first, body, is, small, and, red],
 [second, body, has, large, size, and, green, color],
 [third, body, has, huge, size, and, brown, color],
 [fourth, body, has, average, size, and, blue, color],
 [fifth, body, has, small, size, and, white, color]]).
 % "сhar" from the word "characteristics".
% (3) statements to clarify the location of bodies relative to each other:
loc_sts([[fourth, body, is, under, third, body],
 [fifth, body, lies, on, second, body],
 [first, body, lying, on, third, body],
 [second, body, standing, on, third, body],

 [second, body, stands, right, first, body],
 [first, body, located, behind, second, body]]).
 % "loc" from the word "location".
 % Questions
% are presented as one fact, the only argument of which
% is a list of an arbitrary number of elements - lists of tokens,
% each of which is a word of Russian or English:
all_qus([[where, is, fifth, body, "?"],
 [where, lies, fourth, body, "?"],
 [what, is, on, third, body, "?"],
 [what, lies, under, third, body,"?"],
 [under, what, fourth, body, lies,"?"],
 [on, what, fifth, body, lies,"?"],
 [left, what, first, body, is, located, "?"],
 [before, what, second, body, is, located, "?"],
 [what, size, fifth, body, have, "?"],
 [what, color, fifth, body, have, "?"]]).
 % "qus" from the word "questions".

The main part of the program presented here is located in the section of this

article Appendix. Prolog program that implements the top-down method
of parsing for analysis of English LNL statements and questions about
bodies with flat faces.

Further - only a small fragment of the program.
In particular, it is a demonstration of the efficiency of the procedure for assigning

new, more expressive names of bodies identified in the image - in the superficial
structures of the LNL - in both statements and questions. For example:

 new_name(box1) → old_name(first, body);

 new_name(box2) → old_name(second, body);

 new_name(table) → old_name(third, body);

 new_name(box3) → old_name(fourth, body);

 new_name(book) → old_name(fifth, body).

The procedure on the following listing:

Listing 18

from_old_to_new_names :- ren_sts(L1), char_sts(L2), loc_sts(L3), all_qus(L4),
 L1 = [X1|T],
 an_Phrases1(K1, K2, Y1, X1, L1, []), an_Phrases2(K1, K2, Y2, X2, [X2|_],

[]),
 an_Phrases3(K1, K2, Y3, X3, [X3|_], []), an_Phrases4([X4|_], []).
an_Phrases1(K1, K2, Y, X) --> [].
an_Phrases1(K11, K21, Y1, X1) --> [X1], {X1=[A1,A2,A3,A4,A5], Y1=[A2,A3,A5],
 K11=new(A5), K21=old(A2,A3),
 write(K11), write('->'), write(K21),nl},
 an_Phrases1(K12, K22, Y2, X2).
an_Phrases2(K1, K2, Y, X) --> [].
an_Phrases2(K1, K2, Y1, X1) --> [X1], {X1=[A1,A2|_], Y1=[A1,A2|_]},
 {write(K1), write('->'), write(K2), nl, write(X1), write('->'), write(Y1),

nl},
 an_Phrases2(K1, K2, Y2, X2).
an_Phrases3(K1, K2, Y, X) --> [].
an_Phrases3(K1, K2, Y1, X1) --> [X1], {X1=[A1,A2,A3,A4,A5,A6], Y1=[A1,A2,A5,A6]},
 {write(K1), write('->'), write(K2), nl, write(X1), write('->'), write(Y1),

nl},
 an_Phrases3(K1, K2, Y2, X2).
an_Phrases4(K1, K2, Y, X) --> [].
an_Phrases4(K1, K2, Y1, X1) --> [X1], {X1=[A1,A2,A3|_], Y1=[A1,A2,A3|_]},
 {write(X1), nl}, an_Phrases4(K1, K2, Y1, X1).

The result of the testing is on the following listing ("photos" of the console):

Listing 19
LPA WIN-PROLOG 4.200 - S/N 0111615934 - 24 Oct 2001

Copyright (c) 2001 Logic Programming Associates Ltd

Licensed To: Nickolay Volchenkov
B=64 L=64 R=64 H=255 T=386 P=1163 S=63 I=64 O=64 Kb

| ?-
0.000 seconds to consult 2018_from_lnl_to_dsl_new.pl [d:\mephi-2018\]
| ?- from_old_to_new_names.
 new(box1)->old(first, body)
[assign, first, body name,box1]
 new(box2)->old(second, body)
[assign, second, body, name, box2]
 new(table)->old(third, body)
[assign, third, body name, table]
 new(box3)->old(fourth, body)
[assign, fourth, body, name, box3]
 new(book)->old(fifth, body)
[assign, fifth, body, name, book]
…

Yes

After the assignment of names to all bodies in the image in the Prolog database,
the changed structures - facts-statements and facts-questions with new names and
numbers assigned to them are recorded:

Listing 20
test_st (1, [assign, first, body, name, box1]).
test_st (2, [assign, second, body, name, box2]).
test_st (3, [assign, third, body, name, table]).
test_st (4, [assign, fourth, body, name, box3]).
test_st (5, [assign, fifth, body, name, book]).
test_st (6, [box1, has, small, size, and, red, color]).
test_st (7, [box2, has, large, size, and, green, color]).
test_st (8, [box3, has, average, size, and, blue, color]).
test_st (9, [table, has, huge, size, and, brown, color]).
test_st (10, [book, has, small, size, and, white, color]).
test_st (11, [box3, located, under, table]). test_st (12, [the book, lies, on, the box2]).
test_st (13, [box1, lies, on, the table]). test_st (14, [box2, stands, on, the table]).
test_st (15, [box2, stands, to the right, of a box1]).
test_st (16, [box1, located, behind, box2]).
test_qu (1, [where, is, the book]). test_qu (2, [where, lies, box3]).
test_qu (3, [what, is, on, the table]). test_qu (4, [that, lies, under, the table]).
test_qu (5, [under, what, lies, box3]). test_qu (6, [on what, lies, the book]).
test_qu (7, [to the left, which, is, box1]). test_qu (8, [before, what, is, box2]).
test_qu (9, [what, size, book, have]). test_qu (10, [what, color, book, have]).

After calling the goal: | ? - setof (N, s (N), L). the following results are obtained
(on the console of the Prolog interpreter of LPA [8]) - statements in the form of ca-
nonical deep structures:

Listing 21

test_st (1, [assign, first, body, name, box1]).
test_st (2, [assign, second, body, name, box2]).
test_st (3, [assign, third, body, name, table]).
test_st (4, [assign, fourth, body, name, box3]).
test_st (5, [assign, fifth, body, name, book]).
test_st (6, [box1, has, small, size, and, red, color]).
test_st (7, [box2, has, large, size, and, green, color]).
test_st (8, [box3, has, average, size, and, blue, color]).
test_st (9, [table, has, huge, size, and, brown, color]).
test_st (10, [book, has, small, size, and, white, color]).
test_st (11, [box3, located, under, table]). test_st (12, [the book, lies, on, the box2]).
test_st (13, [box1, lies, on, the table]). test_st (14, [box2, stands, on, the table]).
test_st (15, [box2, stands, to the right, of a box1]).
test_st (16, [box1, located, behind, box2]).
test_qu (1, [where, is, the book]). test_qu (2, [where, lies, box3]).
test_qu (3, [what, is, on, the table]). test_qu (4, [that, lies, under, the table]).
test_qu (5, [under, what, lies, box3]). test_qu (6, [on what, lies, the book]).
test_qu (7, [to the left, which, is, box1]). test_qu (8, [before, what, is, box2]).
test_qu (9, [what, size, book, have]). test_qu (10, [what, color, book, have]).

Note that statements with numbers
12-17 appeared automatically during
parsing using logical deductive output
(for example, "if X is to the left of Y,
then Y is to the right of X" or "if X
stand of front of Y, then Y stand of be-
hind of X" etc.).

To create this block of training, first
of all, it is necessary to develop a
grammar that generates phrases LNL -
a limited natural language for describ-
ing statements and questions regarding
objects present in the image. Let's
demonstrate a simple example of such
a grammar and a program in the
Prolog language that implements the
syntactic analysis of phrases generated
by this grammar.

Note the following:

 in all statements (here, they are not
22, but only 17, since 5 duplicate
assertions are automatically delet-
ed);

 in the processed statements, all
variables are automatically evalu-
ated.

In all ten questions, variables, just
like in all statements, are evaluated as
a result of the program's work.

Questions have acquired the follow-
ing canonical form (kind of deep struc-
tures):

Listing 22
| ?- setof(N, s(N), L).
st(1,object(box1,char(size(small),color(red))))
st(2,object(box2,char(size(big),color(green))))
st(4,object(box3,char(size(middle),color(blue))))

st(3,object(table,char(size(big),color(brown))))
st(5,object(book,char(size(small),color(white))))
st(6,location(is(under),object(box3,char(size(middle),color(blue))),
 object(table,char(size(big),color(brown)))))
st(12,location(is(on),object(table,char(size(big),color(brown))),
 object(box3,char(size(middle),color(blue)))))
st(7,location(is(on),object(book,char(size(small),color(white))),
 object(box2,char(size(big),color(green)))))
st(13,location(is(under),object(box2,char(size(big),color(green))),
 object(book,char(size(small),color(white)))))
st(8,location(is(on),object(box1,char(size(small),color(red))),
 object(table,char(size(big),color(brown)))))
st(14,location(is(under),object(table,char(size(big),color(brown))),
 object(box1,char(size(small),color(red)))))
st(9,location(is(on),object(box2,char(size(big),color(green))),
 object(table,char(size(big),color(brown)))))
st(15,location(is(under),object(table,char(size(big),color(brown))),
 object(box2,char(size(big),color(green)))))
st(10,location(is(right),object(box2,char(size(big),color(green))),
 object(box1,char(size(small),color(red)))))
st(16,location(is(left),object(box1,char(size(small),color(red))),
 object(box2,char(size(big),color(green)))))
st(11,location(is(behind),object(box1,char(size(small),color(red))),
 object(box2,char(size(big),color(green)))))
st(17,location(is(front),object(box2,char(size(big),color(green))),
 object(box1,char(size(small),color(red)))))

The impressive result of the experi-
ment is that none of the ten phrases-
questions examined left any variables
that have not been evaluated, which
indicates a sufficient "intellectuality"
(of course, within the framework) of
the program proposed by the author.

The software package developed for
experiments with the image analysis
system, supplemented by the training
component considered in the article, is
based on two interacting software plat-
forms:

1. Microsoft .NET version 4 (specif-
ically, version 4.0, Visual Studio 2010,
and the Visual Basic 2010 language it
supports);

2. Windows Prolog - versions of
Prolog language interpreters and com-
pilers developed and supported by LPA
[8].

Portability to other platforms is cur-
rently not relevant, as the platforms
discussed above are popular and acces-
sible. In particular, later versions of the
Microsoft .NET platform are compati-
ble with version 4.0, and LPA is cur-
rently continuing to improve and
commercialize Prolog language com-
piler interpreters, which are focused on
the Windows operating system.

The functionality for the user
demonstrates the following note.

The block of training, which is
implemented in the prologue language,
considered in this article, can be easily
included in the image analysis system
described in the previous article of the
author [1]. It is enough to include in
the menu of this system a command
that causes the appearance of a new
screen form.

This form, shown in figure 6,
shows the original data in two text box:
test statements and test questions
about the characteristics and relative
positions of the geometric bodies in the
image. The third window shows the
deep structures of answers to all test
questions obtained as a result of train-
ing.

Figure 6. Screen form with the results of training tests processing, called up during

the operation of the image analysis system

State registration of
the program

The software product presented in
this article served as an important ad-
dition to the software system devel-
oped by the author for image analysis
of polyhedra and cylindrical bodies.
This system passed state registration in
2015, and the author received a certifi-
cate of this state registration of the cor-
responding computer program
"Demonstration program for the analy-

sis of images of bodies with flat faces"
No. 2015611531 (registration date Jan-
uary 30, 2015) [10].

Conclusion
In this article, the principal possibil-

ity of adding an image analysis system
in which the logical (structural) ap-
proach is combined with the visual
programming tools described in the
publication [1], by the training unit,
was considered. In this block it is pro-
posed to implement the program
communication with a person in a lim-

ited natural language using the syntac-
tic analyzer realized by the author in
the Prolog language. The purpose of
this training is to get the system
knowledge of the relative position of
the bodies. This knowledge should help
the robot equipped with the image
analysis system to plan its actions re-
lated to capturing and transferring the
bodies detected on the image.

The experimental check of the par-
ser presented in the article showed
good results: all the considered state-
ments and questions regarding the im-
ages of several bodies fixed in the lim-
ited natural language were successfully
analyzed. The side result was the val-
ues of variables in questions trans-
formed into deep (canonical) struc-
tures. Answers to these questions pro-
vide important knowledge to the robot
manipulator in planning its actions to
capture and transfer bodies.

The approach proposed in this arti-
cle, in the author's opinion, can be use-
ful for teaching autonomous robots to
properly navigate in solving the prob-
lem of capturing and transporting ge-
ometric bodies identified in the analy-
sis of their images.

Bibliography
1. Volchenkov N.G. The application

logical and visual programming inter-
face for image analysis of the geometric
bodies. «Scientific Visualization». Na-
tional Research Nuclear University
MEPhI, 2015. Q3, V7, N3. Pages 84 –
97. [Electronic resource]. URL:
http://sv-journal.org/2015-
3/09.php?lang=eng (circulation date
03.12.2017).

2. Warren D.H.D., Pereira L.M.,
Pereira F. PROLOG – the language and
its implementation. Proceedings of the
Symposium on Artificial Intelligence.
SIGPLAN Notes, 12(8), 1977.

3. Volchenkov, N.G. Logical pro-
gramming. Language Prologue: Texts
of lectures. Ed. second, corrected. and

additional. - Moscow: MEPhI, 2015. –
160 p.

4. Sergievsky G.M, Volchenkov
N.G. Functional and logical program-
ming: Proc. allowance for stud. higher
education. - Moscow: Publishing Cen-
ter "Academy", 2010. - 320 p.

5. Volchenkov, NG. The use of
modern information technologies in
teaching students in the field of "In-
formatics and computer technology",
various programming paradigms:
"Modern scientific research and inno-
vation." 2015. № 3 [Electronic re-
source]. URL:
http://web.snauka.ru/issues/2015/03/
47345 (circulation date 28.03.2015).

6. Bratko Ivan. Algorithms of arti-
ficial intelligence in the language
PROLOG, 3rd edition .: Trans. English.
- Moscow: Williams Publishing House,
2004. - 640 pages

7. Sterling L., Shapiro E. The art of
programming in the language Prolog. -
Moscow: Mir, 1990. - 235 p.

8. The website of Logic Program-
ming Associates Ltd. [Electronic re-
source]. URL: http://www.lpa.co.uk
(circulation date: 21/03/2015).

9. Ziborov V.V. Visual Basic 2010
on examples. - St. Petersburg .: BHV-
Petersburg, 2010. - 336 p.

10. Certificate of state. registration
of the computer program №
2015611531 "Demonstration program
for the analysis of images of bodies
with flat faces." Author: Volchenkov
N.G. (RU). [Electronic resource]. URL:
http://www1.fips.ru/Archive/EVM/20
15/2015.02.20/DOC/RUNW/000/002
/015/611/531/ document.pdf (circula-
tion date 07/04/2015).

11. Volchenkov, N.G. Syntactic anal-
ysis of images of a set of bodies of a
certain class, using the interface of log-
ical and imperative visual program-
ming languages. Journal of New In-
formation Technologies, FSUE
"TsNILOT", 2010, No. 1, p.58 - 62.

http://sv-journal.org/2015-3/09.php?lang=eng
http://sv-journal.org/2015-3/09.php?lang=eng
http://web.snauka.ru/issues/2015/03/47345
http://web.snauka.ru/issues/2015/03/47345
http://www.lpa.co.uk/
http://www1.fips.ru/Archive/EVM/2015/2015.02.20/DOC/RUNW/000/002/015/611/531/
http://www1.fips.ru/Archive/EVM/2015/2015.02.20/DOC/RUNW/000/002/015/611/531/
http://www1.fips.ru/Archive/EVM/2015/2015.02.20/DOC/RUNW/000/002/015/611/531/

Appendix. Prolog program that implements the top-
down method of parsing for analysis of English LNL
statements and questions about bodies with flat faces

A1. Beginning of the code (comments)
It is reasonable to limit ourselves to the presentation of the listing developed by

the author of the LNL parser program, in which the author included the necessary
comments, which greatly facilitate understanding of its work even for those readers of
this article who do not have a significant experience in logical programming, in par-
ticular, in the Prolog language.

So, the beginning of the code interpreted by Prolog:

Listing A1
/* Left bracket of a multi-line comment.
 Translation of Statements and Questions
 from Limited Natural Language (LNL) to Language of Deep Structures (LDS)
 Generating grammar:
Phrase → Statement | Question % A phrase is a statement or a question.
Statement →
 Verb NGroup Noun % for example: " call a brown object a table"

 AdjSize Noun AdjColor | % for example: " the big box is green"

 AdjColor Noun AdjSize | % for example: " the red box is small"

 NounGroup Verb Relation NounGroup
 % for example: " the white book is on the green box "
Question → QWord1 Verb Relation NGroup |

 % for example: " what is under the table "
 QWord2 Verb NGroup | % for example: " where is the blue box "
 Relation QWord3 Verb NGroup |

 % for example: " under what is the blue box "
 QWord4 WSize NGroup | % for example: " what size of the red object "
 QWord4 WColor NGroup | % for example: " what is the color of the little book "
The rest of the grammar rules are given below, in the program - in DCG notation.
And, in conclusion of this introduction, an indication of how this program is launched.
The launch is carried out by entering two goals of Prolog:

| ?- bagof(N, s(N), L).
| ?- bagof(N, q(N), L).

The specification of the predicate bagof/3 is:
 The first argument is the form in which the result is produced, in this case,
 it's just the number of the target statement;
 The second argument is a query to the Prolog database (or target statement),
 in this case, either s (N) or q (N);
 The third argument is a list of all the answers to a query.
The definitions of the predicates s (N) and q (N) are lower, at the beginning of the program.
Right bracket of a multi-line comment:
*/

A2. Interpreted part of the code

After the comments - the interpreted part of the code:
Listing A2

% ---------------- Beginning of the program ------------------%
:-dynamic(st/2). :-dynamic(qu/2).
 % Declarations that remove protection from st / 2 and qu / 2 predicates, which allows
 % write new statements and questions to Prolog DB (database)

% Statements – facts in the Prolog DB:
test_st(1, [assign, first, body, name, box1]).
test_st(2, [assign, second, body, name, box2]).
test_st(3, [assign, third, body, name, table]).
test_st(4, [assign, fourth, body, name, box3]).
test_st(5, [assign, fifth, body, name, book]).
test_st(6, [box1, has, small, size, and, red, color]).
test_st(7, [box2, has, big, size, and, virid, color]).
test_st(8, [box3, has, average, size, and, blue, color]).
test_st(9, [table, has, huge, size, and, brown, color]).
test_st(10, [book, has, little, size, and, white, color]).
test_st(11, [box3, is, under, table]).
test_st(12, [book, lay, on, box2]).
test_st(13, [box1, lies, on, table]).
test_st(14, [box2, stands, on, table]).
test_st(15, [box2, stands, to_the_right, box1]).
test_st(16, [box1, located, behind, box2]).

% Questions – facts in the Prolog DB:
test_qu(1, [where, is, book, "?"]).
test_qu(2, [where, lies, box3, "?"]).
test_qu(3, [what, is, on, table, "?"]).
test_qu(4, [what, lies, under, table, "?"]).
test_qu(5, [under, what, lies, box3, "?"]).
test_qu(6, [on, what, lies, book, "?"]).
test_qu(7, [left, what, is, box1, "?"]).
test_qu(8, [before, what, is, box2, "?"]).
test_qu(9, [what, size, had, book, "?"]).
test_qu(10, [what, color, had, book, "?"]).

% Implementing the transition to DCG notation:
statement(N) :- test_st(N, Linput), an_St(T, [N|Linput], []), !.
question(N) :- test_qu(N, Linput), an_Qu(T, [N|Linput], []), !.

% Next - the rules of the parser in DCG notation:
an_St(N) --> [N], [assign], an_AdjNumb (N), [body, name], an_Noun(Name),
 {St =.. [st, N, object(Name, char(size(Size), color(Color)))],
 assert(St), write(St), nl}. % assert/1 – predicate of adding a term
 % to the Prolog database.
 % Here is an old statement with a new name.
an_St(N) --> [N], an_Noun(W), [имеет],

 an_AdjSize(Size), [размер], [и],
 an_AdjColor(Color), [цвет],
 {retract(st(NX, object(W, _))), % retract/1 – predicate of removing statement
 % from the Prolog database.
 % Here is an outdated statement.
 St =.. [st, NX, object(W, char(size(Size), color(Color)))],
 assert(St), write(St), nl}. % - adding of the new statement into place
 % of the removed outdated statement.
an_St(N) --> % This is the realization of symmetric relations:
 % if X is "to the left" Y, then Y is "to the right" X. Etc.
 [N],
 an_NGroup(Name1, Char1),
 an_Verb, an_Relation(R1),
 an_NGroup(Name2, Char2),
 {st(_, object(Name1, Char1)), st(_, object(Name2, Char2)),
 St1 =.. [st, N, location(is(R1),
 object(Name1, Char1), object(Name2, Char2))],
 assert(St1), write(St1), nl,
 opposite_location(R1, R2),
 St2 =.. [st, N, location(is(R2),
 object(Name2, Char2), object(Name1, Char1))],
 assert(St2), write(St2), nl}.
 % The addition to this rule in the pure Prolog notation:
opposite_location(left, right) :- ! opposite_location(right, left) :- !.
opposite_location(on, under) :- !. opposite_location(under, on) :- !.
opposite_location(front, behind) :- !. opposite_location(behind, front) :- !.

an_Qu(N) --> [N], an_QWord1, an_WSize, an_NGroup(Name, _), ["?"],
 {st(_, object(Name, Char)),
 Qu =.. [qu, N, object(Name, Char)], assert(Qu), write(Qu), nl}.
 % Interrogative words "What size", etc.
an_Qu(N) --> [N], an_QWord1, an_WColor, an_NGroup(Name, _), ["?"],
 {st(_, object(Name, Char)),
 Qu =.. [qu, N, object(Name, Char)], assert(Qu), write(Qu), nl}.
 % Interrogative words "What color", etc.
an_Qu(N)--> [N], an_QWord1, an_Verb, an_Relation(R), an_NGroup(Name, Z), ["?"],
 {st(_, location(is(R), object(Name1, Z1), object(Name, Z))),
 st(_, object(Name1, Z1)),
 Qu =.. [qu, N, location(is(R),object(Name1, Z1), object(Name, Z))],
 assert(Qu), write(Qu), nl}.
 % The interrogative words "What lies on, under ...", etc.
an_Qu(N) --> [N], an_QWord2, an_Verb, an_NGroup(Name, Z), ["?"],
 {st(_, location(is(R), object(Name, Z), object(Name1, Z1))),
 st(_, object(Name1, Z1)),
 Qu =.. [qu, N, location(is(R),object(Name, Z), object(Name1, Z1))],
 assert(Qu), write(Qu), nl}.
 % The interrogative words "Where lies ...", etc.
an_Qu(N) --> [N], an_Relation(R), an_QWord3, an_Verb, an_NGroup(Name, Z), ["?"],
 {st(_, location(is(R), object(Name, Z), object(Name1, Z1))),

 st(_, object(Name1, Z1)),
 Qu =.. [qu, N, location(is(R),object(Name, Z), object(Name1, Z1))],
 assert(Qu), write(Qu), nl}.
 % Interrogative words "On what lies, what lies ...", etc.

an_QWord1 --> [what]. an_QWord2 --> [where].
an_WSize --> [size]. an_WColor --> [color].

an_Verb --> [X],
 {(L = [call, rename, assign];
 L = [lies, stands, is]), member(X, L)}.
an_Relation(on) --> [on].
an_Relation(under) --> [under].
an_Relation(near) --> [X], {member(X, [near, around])}.
an_Relation(behind) --> [X], {member(X, [abaft, behind])}.
an_Relation(front) --> [front].
an_Relation(left) --> [X], {member(X, [left, to_the_left])}.
an_Relation(right) --> [X], {member(X, [right, to_the_right])}.

an_Noun(W) --> [X], {name(X, UX), % numbered noun
 reverse(UX, [UN|_]), member(UN, "0123456789"),
 append("box", [UN], UW), name(W, UW)}.
 % convert to the canonical word «boxN», where N = 1, 2, …
an_Noun(body) --> [X], {name(X, UX), % convert to the canonical word «body»
 (L = "object"; (L = "body"; (L = "polyhedron"; L = "box"))),
 append(L, _, UX)}.
an_Noun(pyramid) --> [X], {name(X, UX), % convert to the canonical word «pyramid»
 L = "pyramid",
 append(L, _, UX)}.
an_Noun(book) --> [X], {name(X, UX), % convert to the canonical word «book»
 (L = "book"; (L = "brifcase"; (L = "notebook"; L = "tablet"))),
 append(L, _, UX)}.
an_Noun(table) --> [X], {name(X, UX), % convert to the canonical word «table»
 (L = "desk"; L = "table"),
 append(L, _, UX)}.
an_NGroup(Name, char(size(Size),color(_))) --> % Analysis of the noun group
 an_AdjSize(Size), an_Noun(Name). % with indication of only the size
an_NGroup(Name, char(size(_),color(Color))) --> % Analysis of the noun group
 an_AdjColor(Color), an_Noun(Name). % with indication of only the color
an_NGroup(Name, char(size(_),color(_))) --> % Analysis of the noun group
 an_Noun(Name). % without indication of color and size
an_NGroup(Name, char(size(Size),color(Color))) --> % Analysis of the noun group
 an_AdjSize(Size), an_AdjColor(Color), % with indication of both color and size
 an_Noun(Name).

an_AdjNumb(N) --> [X], % Analysis of words for the serial number of the body
 {Y =.. [X, N], member(Y,
 [first(1), second(2), third(3), fourth(4), fifth(5)])}.

an_AdjSize(big) --> [X], {name(X, UX), % Analysis of words for a large size
 (((L = "large"; L = "big"); L = "great"); L = "huge"),
 append(L, _, UX)}.
an_AdjSize(middle) --> [X], {name(X, UX), % Analysis of words for a middle size
 ((L = "middle"; L = "medium"); L = "average"),
 append(L, _, UX)}.
an_AdjSize(small) --> [X], {name(X, UX), % Analysis of words for a little size
 ((L = "small"; L = "little"); L = "weeny"),
 append(L, _, UX)}.
an_AdjColor(red) --> [X], {name(X, UX), % Analysis of words for red color
 L = "red",
 append(L, _, UX)}.
an_AdjColor(green) --> [X], {name(X, UX), % Analysis of words for green color
 (L = "green"; L = "virid"),
 append(L, _, UX)}.
an_AdjColor(blue) --> [X], {name(X, UX), % Analysis of words for blue color
 (L = "blue"; L = "sapphirine"),
 append(L, _, UX)}.
an_AdjColor(brown) --> [X], {name(X, UX), % Analysis of words for brown color
 (L = "brown"; L = "fulvous"),
 append(L, _, UX)}.
an_AdjColor(white) --> [X], {name(X, UX), % Analysis of words for white color
 L = "white",
 append(L, _, UX)}.
%-------------------------------------- End of the program
% © Nikolay Volchenkov. 2018

